
Java Pathfinder Version 6
Scalability

1
Wednesday, January 5, 2011

Goals

✦ develop new major JPF version to address scalability limiters identified
in VVFCS milestone 06/30/2010

✦ two limiters identified in VVFCS milestone 06/30/2010:
• (1) major: allocation time exponentially growing with heap size
• (2) superfluous transitions/states caused by standard thread

synchronization APIs
✦ primary goals are optimization efforts
✦ additional goals:

• improve overall performance (garbage collection, state storage/
matching, partial order reduction)

• improve extensibility (can run contrary to optimization)
• reduce complexity hotspots (e.g. partial order reduction reachability

analysis)

2
Wednesday, January 5, 2011

Deliverable

✦ JPF version 6 released 11/30/2010 on http://babelfish.arc.nasa.gov/hg/
jpf/jpf-core

✦ major development effort (hg history --stat -d”>07/01/10”):

• total change statistics since VVFCS milestone 06/30:
‣ 1439 files
‣ 40197 added lines
‣ 22906 removed lines

• change statistics related to main goal (allocation time optimization):
‣ 780 files
‣ 19319 added lines
‣ 12687 removed lines

3
Wednesday, January 5, 2011

http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core

✦ major success: exponential allocation time problem eliminated
✦ v6 has linear allocation time

Results - Allocation Time (1)

4

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5000 10000 15000 20000 25000 30000

tim
e

[m
s]

number of allocated objects

Absolute Run Time

2 threads v5
2 threads v6

version 5

version 5

Wednesday, January 5, 2011

Results - Allocation Time (2)

✦ version 6 scales linearly up to >10e5 objects per thread
✦ absolute allocation time reduced to same order of magnitude as host

VM heap management spikes (due to garbage collection / heap growth)
✦ ⇒ allocation bottleneck eliminated

5

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100

tim
e

[m
s]

number of allocated objects [x1000]

Absolute Run Time

2 threads v6

host VM heap mgnt spikes

Wednesday, January 5, 2011

Results - Allocation Time (3)

✦ relative allocation time in version 6 independent of number of
allocating threads

✦ order of magnitude better
for >10,000 objects

✦ nearly constant

6

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

re
l.

al
lo

ca
tio

n
tim

e
[m

s /
 1

00
0

ob
je

ct
s]

number of allocated objects [x1000]

Relative Allocation Time v6

1 thread
2 threads
3 threads
4 threads

Version 5

Version 6

Wednesday, January 5, 2011

Challenges: Heap Replacement Insufficient

✦ allocation time was dependent on old heap implementation (required
array of address space size)

✦ heap implementation was hardwired into state storage/restore and state
matching components (both crucial for model checker)

✦ execution engine (partial order reduction) was piggybacking on
DynamicArea garbage collector

7

ElementInfo[] elements
Area

DynamicArea

heap implementation

state storage/restore
StateRestorer

CollapsingRestorer

state matching
Serializer

FilteringSerializer

direct
references

direct
references

execution engine

field access POR
(prospective reachability)

Wednesday, January 5, 2011

Solution: Redesign

✦ isolate heap implementation by means of abstract Heap interface
✦ design interface so that it does not require storage allocation for whole

address range, and does not assume consecutive reference values
✦ implement per-thread clustered heap with efficient live object

enumeration and free lists

8

SparseClusterArrayHeap

<Heap>

heap implementation

state storage/restore
StateRestorer

MementoRestorer

state matching
Serializer

CFSerializer

interface
references

interface
references

execution engine

field access POR
(de facto access log)

Wednesday, January 5, 2011

Solution: SparseClusterArrayHeap

✦ const time get & set operations (but thread and per-thread object limit)
✦ memory efficient for sparse address space (garbage collection holes)
✦ efficient enumeration of entries

9

…

… …

…

…
…0 1 0 1

…
…0 1 0 1

ElementInfo

…

…

…

…
free list bitmap

0x01fe0100

next used
chunk

0255

0255

0255

0255

segmented
reference value

data chunks

trie nodes

allocating thread id 1st free entry

Wednesday, January 5, 2011

More Heap Redesign Benefits

✦ state storage, state matching, partial order reduction (POR) redesign ⇒
better extensibility + significant performance improvements for larger
systems under test (less garbage collection cycles, less states)

✦ new design enables efficient implementation of property specific state
matching (e.g. under-approximation for finding concurrency defects)

✦ non-trivial Java Swing example (jpf-awt/src/examples/RobotManager-
threaded.jpf - complex NullPointerViolation in multithreaded graphical
user interface program):

10

version time states search depth
v5 15sec 8829 587
v6generic 10sec 6176 508
v6concurrency 1sec 360 89

Wednesday, January 5, 2011

State Optimization (1)

✦ second identified limiter (superfluous re-execution) was caused by
standard Thread.join():

11

class Thread {
 ..
 public synchronized void join(..){
 while (isAlive()){
 wait();
 }
 }
}

scheduling point ① : lock acquisition

scheduling point ② : signal wait

requires

..
t2.join();
..

public void run(){
 lenghyComputation();
}

scheduling point ③ : thread termination

1

2

3

3

Thread t1 Thread t2

state graph

lenghyComputation

lenghyComputation

mandatory lock acquisition causes 2x lengthyComputation
leading into same state

2'

2'
t1 blocked

t1 unblocked

Wednesday, January 5, 2011

Results - State Optimization (2)

✦ lock acquisition only required for generic (application) signal waits
✦ specific signal waits (Thread.join) can be implemented inside virtual

machine - no need for loop that requires lock protection
✦ depending on joined thread, savings can be significant:

12

== system under test
application: gov/nasa/jpf/bench/AllocBench.java
arguments: 2 10000
..
starting 2 threads with 10000 objects each
== statistics
elapsed time: 0:00:05
states: new=9, visited=2, backtracked=10, end=2
heap: gc=94, new=40331, free=40061
instructions: 603507

== system under test
application: gov/nasa/jpf/bench/AllocBench.java
arguments: 2 10000
..
starting 2 threads with 10000 objects each
== statistics
elapsed time: 0:00:00
states: new=5, visited=0, backtracked=4, end=1
heap: new=20366, released=20036, max live=10348, gc-cycles=5
instructions: 303379

version 5

version 6

allocates twice as many
objects as required due to
superfluous lock in
Thread.join()

?

Wednesday, January 5, 2011

